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Abstract 

By adding one term to the Lagrangian density that governs classical electromagnetic 
theory via Maxwelrs equations, a parameter-free non-linear generalization can be 
formulated. Some properties of plane waves, wavepackets and self-focussed beams in 
the resulting non-linear vector field theory are discussed here. 

1. Introduction 

P. A. M. Dirac (1951, 1952, 1954) has proposed a generalization of 
classical electromagnetic theory within which he can describe the motion 
of  charged elements of  space and the fields due to such charged elements in 
a unified manner. That is to say, the Lorentz force appears naturally in his 
theory--i t  is there from the beginning, rather than as an added hypothesis 
that extends the universe of Maxwell's equations from the description of 
electromagnetic wave propagation into the realm of  classical electro- 
dynamics. Of course, he has added a different hypothesis, the subsidiary 
condition [Dirac, 1951, equation (9)], 

A i At = k 2 

but it appears very early in the formulation of  the theory--at  a point where 
only the vector potential Ai has been defined, where nothing has been said 
about the existence or non-existence of electrons, and where very little has 
been said about charge. Even from a strictly classical point of view the 
introduction of a hypothesis that brings charge in naturally and ultimately 
subsumes the Lorentz force, if there are charged particles, is attractive, for 
it erases the particle-field dichotomy and makes it easier to re-examine the 
notion of constructing a generalized classical electrodynamics that 
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describes the structure of electrons as well as their motions. Dirac's theory 
is not such a theory, however, in it he has proposed (Dirac, 1954): 

' . . .  that the theory of electrons should be built up from a classical theory 
of the motion of a continuous stream of electricity rather than the motion 
of point charges. One then looks upon the existence of discrete electrons 
as a quantum phenomenon.' (from III) 

With no presumption to belittle Dirac's contributions to our under- 
standing of the behavior of electrons, I shall, however, take exception with 
his proposal. In my opinion, he has suggested that we resort to quantization 
too soon. This article will be devoted to the elucidation of some of the 
qualitative features of the solutions of a non-linear generalization of 
Maxwell's equations. The effort here is similar in spirit and intent to Dirac's 
--his theory is a non-linear generalization of Maxwell's equations (compare 
Nambu, 1968)--but this is a different theory. The solutions to be discussed 
here are classical free particle states; they are wavepackets that are localized 
in space and carry with them in their uniform motion a property that can be 
provisionally identified with internal angular momentum. A related class 
of solutions describes a possible final state of self-focussed laser beams. 

2. ((AA)2), 

The non-linear vector field theory to be discussed here is governed by a 
variational principle of the form 

3 f ( T -  V)dx~ 3 =0 (2.1) 

with 
T= l "~S kUtA - A t  k)(Al j --A1 l) (2.2) - -  ~ , S  ~, k , f  , , , 

and 
V= • �88 A~ A j) 2 

where repeated covariant-contravariant indices are summed from 0 to 3, 
indices following a comma denote partial derivatives, and g~J = g~j = l, -1 ,  
or 0 when i = j  = O, i =j  # 0 or i # j. ((AA)Z)4 is a natural vector-generaliza- 
tion of the scalar field theory, (r that is obtained when T= �89162162 
and V = =t= �88162 are Lorentz-invariant and derived from the same kind 
of variational principle, and they have the same dimensional group (l, l) but 
in terms of structural stability-~ they are profoundly different. By way of 
comparison, it may be noted that Dirac's theory is of the form (2.1) with 
V = - � 8 9  where the Lagrange multiplier that has been 
introduced to account for the constraint is a scalar field h(x k) and k 2 is a 
positive constant. 

The field equations of ((AA)2)4 are 

F ~  = j "  (2.3) 

t This is discussed by Bisshopp (1971a). 
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where 
f i j  ~- A j , i  - A i  ,j = - F ~ i ,  

} k  = •  A , ) A  k 

and the duality of covariant and contravariant indices is defined, as usual, 
in terms of the metric gU = gu-'~ The four-vector jk will be provisionally 
identified with charge-current density, and charge conservation, 

],~, = F, ii = 0 (2.4) 

follows directly from the antisymmetry of F u, provided the mixed third 
partial derivatives of A, are continuous--no situations where this is not the 
case will be considered here. It follows directly that Maxwell's equations 
are obtained, if A* is identified with the vector potential of electromagnetic 
theory, in the limit where 

A ' A ,  -+  0 (2.5) 

and it may be noted that they are not quite a weak-field limit, since neither 
the components ofA k nor their gradients need be small provided the weaker 
condition (2.5) is satisfied. 

Some of the properties of((AA)2)4 may seem somewhat less obscure when 
it is recast in the older and more familiar notation where (A t) -+ (~,A), 
(x ~) -+ (t, x), and 

,3 f {�89 +&]2  - �89 • A] z v k ( q V  - I A l 2 ) z I d Z x d t = O  (2.6) 

in any convenient inertial frame. The field equations then are 

where 
V. E = p and 

E =- - V ~  - A t ,  

p = • ~(~b 2 - [A[2), 

and further relations 

V x H - E t = j (2.7) 

H=-V x A ,  

j - +  A(~ 2 _ ]A[2) (2.8) 

V . H = 0 ,  V x E + H , = 0 ,  p t + V . j = 0  (2.9) 

are identities. The theory is not gauge invariant, but that does not mean that 
gauge transformations where (~b, A) -+ (~b + Xt, A - VX) cannot be used to 
clarify certain kinds of problems. In the special case where (q~,A)-+ 
(Xt, A - VX), for example, (2.6) becomes 

3̀ f {�89 2-�89 •188 (2.10) 

and the charge conservation law, 

(X,(Xt  z -  ]A-VXlZ))t + V . ( ( A - V x ) ( x ~  2 -  IA-VXI2)) = 0 (2.11) 

t F"" = gmig,j  Fu ' A k = gut Aa ' and so on. 
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is a field equation, rather than an identity that follows from the field 
equations. 

3. Plane Waves  

Although it is generally impossible to classify and describe the qualitative 
features of  all the solutions in a field theory, we can find at least some of the 
qualitative features of a field theory by considering certain classes of solu- 
ti0ns--similarity solutions for which the field equations can be reduced to 
ordinary differential equations. The simplest class of such solutions in 
((AA)2)4 is that of the plane waves where 

A , ( x  k) = at(O(xk)), O,t =- oJ t (3.1) 

and (oJt) = (oJ0, -k )  is a constant  four-vector. The ansatz (3.1) differs from 
that which is employed at the outset of a Fourier analysis of a linear 
problem in so far as the functional dependence of a t ( o J o t - k . x )  is not 
specified in advance to be sinusoidal. Instead, it is to be determined by the 
field equations, which for solutions of the form (3.1) follow from 

T = - �89 tot oJjg kt ak' at' - (g t j  o j  t aj,)2) 
V = =I= �88 at aj) 2 (3.2) 

where the prime denotes differentiation with respect to the argument 0. 
The field equations for at are the Euler equations of 

f ( T -  V)dO = 0 (3.3) 

where T and V are expressed as in (3.2)t. 
Since ((AA)2)4 is Lorentz-invariant, there is a certain amount of arbitrari- 

ness in the choice of the inertial frame in which plane waves are to be 
described, and we are free to use that choice of frame to simplify the descrip- 
tion. Given a four-vector (wt), the quantity tokoJk = gtJoJt~o J is invariant 
under the transformations of the Lorentz group--the relevant feature of  
it is whether it is positive or negative. In this article we shall consider only 
the case where oJktok is greater than zero, i.e. the case where the phase 
velocity of plane waves, lO)o[/Ik], is greater than 1. Then there is an inertial 
frame in which k = 0, i.e. (wi) = (oJ, 0, 0, 0). In that particular frame, which 
we shall call the wave-frame,  we shall let 

(a,) = (ao, - a )  (3.4) 
and then 

T =  �89 2 

v :  4- &(a0 2 - 1 12) = 

(3.5) 

t Compare Bisshopp (1971b) where this is shown in a more general context, and also 
Section 4 of the present article. 
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The Euler equation, 

(T,,o)' + Vao = Vao = • a0(a02 - [~[2) = 0 (3.6) 

implies either that ao 2 -  jot] 2 =glJa~a j  = 0 or that a0 = 0. Since the first 
option leads directly to a linear theory governed by Maxwell's equations, 
we naturally choose the second, which has non-linear plane waves governed 
by 

f T �88  = 0 (3.7) 3 

in the wave-frame. 
There is an easily distinguished class of solutions of(3.7) that corresponds 

to the plane-polarized plane waves of  electromagnetic theory. The plane- 
polarized waves where 

or(O) = fid?(O) (3.8) 
and t1 is a unit vector that does not vary with 0 are governed by 

f {�89 2 (~'2 ~: � 8 8  dO = 0 (3.9) 

Now, (3.9) is the equation that governs the plane waves of  the (~4)4-theory 
in the wave-frame, and since those waves have been discussed in some detail 
by Bisshopp (1971b, 1971c), their properties will not be repeated here. In 
this article we shall be primarily concerned with rotating waves where 

(or) = A(O) (cos ~(0), sin ~(0), 0) (3.10) 

in a coordinate system where the alignment of the positive z-axis is specified 
by an arbitrary unit vector ~ that does not vary with 0. Since (3.7) implies 
conservation of  angular momentum (in the mechanical analog where 
tz ~ x and 0 +-~ t), (3.10) is the most general form for (Qt), and 

8 f {�89 '2 + A 2 ~  '2) zF �88 = 0 (3.11) 

in general. 
The Euler equation 

r.,O 2 A 2 ti3' = I (3.12) 

is the angular momentum integral in the same mechanical analog. When it 
is substituted in the final Euler equation, the result, 

l 2 
~o 2 A"  = ~~ 2 A3 z~ A 3 (3.13) 

is seen to have the energy integral 

�89 A '2 + U(A)  = E (3.14) 
where 

U ( A )  = 1 l 2 1 g 
2 to2 A2 + ,~A (3.15) 
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is the effective potential. If there are to be bounded solutions of (3.14), 
U ( A )  must have a relative minimum, and therefore it is necessary that the 
plus sign be assigned to V. In the other case where V has the minus sign, 
there are plane waves when g*Jo),coj is less than zero--such waves have 
phase velocities less than 1. 

The plane-polarized waves are recovered formally from (3.14) and (3.15) 
when l = 0, but as can be seen in Fig. 1, the limit where l -+ 0 is singular. 
Nevertheless, the plane-polarized wave is a rotating wave with vanishingly 
small angular momentum, as we shall see. 

IU 

A 
toga t 

~ 0  

Figure 1--Effective potentials for plane-polarized and rotating plane waves. 

The problem of defining the dispersion relations for the rotating waves is 
somewhat more complicated than it is for the plane-polarized waves [the 
(~4)4-theory], where the fundamental periodic solution is assigned the 
period 2rr, in accord with the usual convention for specifying the frequency 
of an oscillation. The resulting dispersion relation is 

in the wave-frame.t Given the values of ~2, l 2 and E, the solution ~(0) of 
(3.7) is, in general, a doubly periodic function of 0. The libration period 
2~r is the period of the fundamental periodic solution defined by (3.14) and 
(3.15), and the rotation period 2~rs can be defined as the corresponding 
advance of ~ according to (3.12) when 0 increases by 27rr. A rather obvious 
convention we might adopt to define dispersion relations is that r = 1, thus 
defining oJ to be the libration frequency. Another possibility is to consider 
only strictly periodic waves where r = 1/q, s = p/q,  p and q are integers 

t Compare Bisshopp (1971b, 1971e). 
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(relatively prime defines a fundamental oscillation), and the period of = is 
2rr. Neither of these is a very convenient convention for specifying the 
dispersion relations, however, and for reasons that will become clearer as 
the detailed behavior of  the rotating waves is unfolded, we shall adopt the 
convention that s = • i.e. the libration and rotation periods are equal 
except for a sign that will be determined by the sign of l. The advance of q5 
during a cycle of  the libration is then equal in magnitude to the advance 
of 0, and o) is the mean rate of rotation of = in radians per unit time. 

The dispersion relations can be expressed as follows. Given o~ 2 and l z, let 
E be large enough for (3.14) to have real, periodic solutions, and define the 
action 

g(co2,12,E) =- f r A' dA = f[2o)2(E - g)]'nldA I (3.17) 

where the integral is over one period of the libration. Then 

and 

A j. [2~2(E_ U)]. ~ & = 2rrr 

d@= co2-/A2 A, = A2[2coZ-~SU)]l/a=-Jt=-4-2~r 

(3.18) 

(3.19) 

Evidently, the dispersion relations E = E,(o)) and l = l,(oJ) are dependent 
upon the wave form (i.e. on the value of r), and they are implicit in (3.18) 
and (3.19). The problem of determining the functions E, and I~ cannot be 
expected to be a very pretty one in a general vector field theory that carries 
rotational waves, but since ((AA)2)4 has a dimensional group that has not 
been used yet, it can be simplified considerably here. Let 

Then 

1/3 4/3 
A • ~ and E =  l = - e ~ g m . ~ . ~ . .  

o..I 

J=2[IJ f 2 e- -2~4)J d. (3.21) 
~m 

where the limits of integration are the lesser and greater positive zeroes of 
the integrand, and the implicit dispersion relations are 

and 

JE ~ 5 - 1 / 3  j ' (e)  = 2rrr 

Jl = ~ (j(e) -- ~ej'(e)) = qZ2rrr 

(3.22) 

(3.23) 
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where the prime denotes an ordinary derivative of 

1)],,2 
j ( e ) = 2  f 2 e 2o~2 4a4 d~ 

~m 

~'~ ( 1 ~',~ 
=4e  3/4 f 1 - a  4 4a 2e3/2 ] da 

~m 

(3.24) 

where 
- ~ e j '  - j  = "tr - 0 ( e  -3 /4)  

1 

4 f (1 - a4)112 d a  ~'=~. 

0 

- ( { ) ! ( -1 )~ t"  ~ 1 . 1 1 2 8  
~(1) t 

The results (3.26) follow quite easily from a straightforward expansion in 
powers of (e - I). To obtain (3.27) is a more complicated problem--Fig. 2 
is a schematic diagram that indicates the sources of the leading contributions 
to the evaluation o f j  when e is large. 

In (3.26) and (3.27) both the order and the sign of the first neglected term 
are indicated, and it is strongly suggested that -~ej' - j  increases monotonic- 
ally from ~ra/{ to ~-, while its slope decreases monotonically from r~/~/3 

(3.27) 

(3.28) 

The functionj(e) is defined on the interval 1 < e < m ; the second form of it 
[e = (4e) u4 a] is particularly useful for the determination of the asymptotic 
behavior of the dispersion relations in the limit where e ~ ~. After the 
choice of the + sign has been made in accord with the sign of/ ,  (3.24) can 
be solved (numerically) for e(r). Then 

(J'(e(r))'~3oj4 z= • \ ~-~;-! 
and (3.25) 

E , , [ j ' (e (r ) )~4  = e t r ) [ ~ )  oJ 4 

The analysis of (3.25) can be almost entirely completed in terms of the 
asymptotic results: 

j ( e )  = rr ~v/{(e - 1) - O((e - 9 2) 
and (3.26) 

{e j '  - j  = ~ra/{[1 + �89 - 1) - O((e - 92)] 

for e ---> 1 from above, and for e -+ oo, 

j ( e )  = ~ 7 e  3/4 - -Jr + 0 ( e  -3 /4)  
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! / 0-o4) "z 
r ~ r  ~e } 

~ ] = 4,e"(r~ I'+ O(e"~)) 

i 
"i' - - ~  , 2 "  ~ (,-y,), ~ 

F -~4  I -n  am~~e {l+~e ) 

Figure 2--Leading terms of] when e --+ oo. 

to 0 as e increases from �88 to oo. Figure 3 is a graph o f  it that includes the 
information in (3.26) and (3.27), numerical computations at e = 1,2, 5 and 9 
and an estimate of  the term of  0(e-3/4). 

Evidently, there corresponds to each value of  r(e) in the range l /x /6  < 
r < �89 a single value o f  e and a unique member of  the set o f  nested torii 
defined in the a cos ~b a sin ~ ,  ~'-space by the relation, 

1 ,2 1 ~c~ + 2 - - ~ +  ~ 4 = e ,  �88  (3.29) 

The trace of  the corresponding solution winds about the torus, and, depend- 
ing on whether r is rational (=p/q)  or irrational, either closes upon itself 
after p rotations and q librations to define a strictly periodic solution, or 
fails to close, and ultimately passes arbitrarily near every point on the torus. 
In the limit where r approaches 1/~/6 the torii collapse to the degenerate 
one, which is the circle defined by e = �88 the libration disappears, and the 
result is the non-linear analog of  the familiar circularly polarized electro- 
magnetic wave. Our convention for specifying the dispersion relations 
coincides with the usual one in this case, and thus the dispersion relations 

3to 4 
l = • 4 and E = ~ -  (3.30) 

for circularly polarized waves are obtained by setting r = 1/V'6 in (3.25). 
In the other limit where r -+ �89 and e -+ oo ;j' ~ 0, I/oJ 4 -+  O, E ~ (3~,/4)4 o~ 4, 

"rr 

3,0 

2..5 

/_.__~/~ , 3 It(l+ ~- (e- ~ )..~) 

l / ~  J i" z~,r 
-o- 2 .57  2.57 

.627 2,45 2.64 

f [  2 2,91 2.15 2.81 
[ 5 B,64 1,74 2.97 

9 15,08 1.51 3,05 

0.57e -~'/4 
I 2 5 9 

Figure 3---(-~ej'(e) -y(e)) ---- 2~rr(e). 
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the solution approaches the plane-polarized wave, and the dispersion 
relation (3.16) is recovered. 

It may be of interest to see how the plane-polarized wave, for which A = 0 
is not in any way a singular feature of the wave form, can be a limiting 
case of rotating waves, for which A = 0 is singular. The wave form of a 
rotating wave can be represented by plotting the projection of its trace on 
the ~cos q~, ~ sin ~b-plane. Figure 4 is a schematic diagram of two rotating 
waves in which the positions and magnitudes of the maxima and minima 
of e are represented faithfully (five, incidentally, is the lowest value of p 

e # 0,82 

Figure 4--Paradigms of the ~ and -~  rotating waves. 

for which there are three strictly periodic waves, including the @6-fourth 
harmonic of the plane-polarized wave). As r ~ �89 and e ~ 0% the value of  
the minima of ~ approaches zero, and the asymptotic description of the 
rotating wave as a plane-polarized wave which has a plane of polarization 
that rotates about the polarization vector ~ in it becomes better and better. 
At r = �89 the rate of rotation of the plane of polarization is zero. Another way 
to look at it is to examine the behavior of A(O) and ~(0) for a sequence of 
values of r that approaches �89 As r increases, A(O) approaches the function 
[A [(0), which is the magnitude of the amplitude of the plane-polarized wave 
(it has corners at I A [ = 0), and ~(0) approaches a piecewise constant function 
that increases (or decreases) discontinuously by 7r at each zero of A. The 
two views of the limit are not contradictory.t 

The paradigms of the rotating waves (Fig. 4 and others) are to be con- 
trasted with the Lissajous figures that are commonly cited as examples of 
periodic solutions of linear, two-dimensional, vector wave equations. 
Since superposition of solutions is not allowed in ((AA)Z)4, the Lissajous 
figures are not the traces of limiting wave forms in the non-dispersive limit 
where o) -+ 0. This brings to mind the question of whether or not ((AA)2)4 
contains non-linear analogs of the elliptically polarized waves of electro- 
magnetic theory. (Any respectable candidate for a non-linear electro- 
magnetic theory had better contain them, since they are regularly observed.) 
The answer is yes, but to see them we must take the plane waves out of the 
wave-frame, as follows. 

t All this, and much more, was well known to the nineteenth-century mathematicians 
who studied the properties of elliptic functions. 
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The wave-frame, it may be recalled, was defined as the inertial frame in 
which the frequency-wavenumber vector is (o9, 0). In the laboratory frame 
the corresponding quantity is (col) = (co0,-k), and since the plus sign has 
been chosen for V [equation (2.2)], the phase velocity of every finite ampli- 
tude plane wave is greater than 1 and the velocity of the wave-frame relative 
to the laboratory frame (the reciprocal of the phase velocity) is less than 1. 
Given the direction of k, which we shall take to be the positive z-axis of the 
laboratory frame, and any convenient orientation of the x- and y-axes, the 
direction of the polarization vector can be specified in terms of Euler angles, 
O and ~ ,  and the rotation angle q~(0) can be measured from the line of  
nodes, all as in Fig. 5. 

odes 

Figure 5--Euler angles. 

~  

Since r is fixed for a plane wave, (9 is constant and ~ can be set equal to 
zero (without loss of generality), to obtain the result that 

(d ~) = A(O) (0, cos q~(0), cos (9 sin ~b(0), sin 0 sin q~(0)) (3.31) 

in the frame that moves with the velocity k/oJ o on the positive z-axis of the 
laboratory frame. In the laboratory frame 

[ k sin (9 sin ~ sin (9 sin q) '~ 
(a i) = (a ~ ~) = A i o)0-~- ~ ~ k ~ 0 2 ) ,  cos ~, cos (9 sin ~, ~ / ~  - k~oZ~  ] 

(3.32) 
and since 

A ' ( x  ~) = a'(~oo t - ~ z )  (3 .33)  

the fields observed in the laboratory frame are 

H = V x A = - k  x a '  and E = - V A  ~ - A t = ka ~ - co o a '  

(3.34) 

Now, H is clearly transverse to k, and the transverse part of E is 

- -o)  0 
E - ~:(~.E) = --7:-_ ~ • H (3.35) 

/ r  
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in accord with results obtained from Maxwell's equations, but there is also 
a longitudinal component, 

~. E = ~ V'(Wo 2 - k2)[A sin ~] '  sin (9 (3.36) 

in the laboratory frame. Given a wave form that is fixed by the specification 
of O, W and e [or r(e)], then 

/4E\~/4 
A = ~- I F )  Io~l a (3.37) 

which follows from (3.20), (3.25) and the substitution ~ = (4e)l/4a that was 
used to obtain the second form of (3.24), implies an ordering of the magni- 
tudes of the components of the electric field in the nondispersive limit where 
too 2 - k z -+ 0. Since a is bounded above by 1 and E/to 4, above and below 
by �88 and (3),/4) 4 for all rotational waves, the results 

A = 0 [ v ' ( O , o  2 - k 2 ) ] ,  I E I  = 0[~/(co02 - kZ)] and I~.EI = 0(~o0 z - k z) 

(3.37) 

imply that the fields of all the rotating waves are transverse in the laboratory 
frame in the non-dispersive limit. The case where e = �88 supplies the non- 
linear analog of the elliptically polarized waves of electromagnetic theory, 
and in addition there are more complicated rotating, elliptical waves of the 
kind illustrated in Fig. 6. 

e~ 1.2 

arn ~0,66 

/ 

( .  ~ 2~r 3)21, Figure 6--Paradigm of the transverse part of the ~, -~, -wave. 
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An interesting limiting case of the rotating, elliptical waves is that where 
O is 7r/2 and the wave is seen 'edge on', so to speak, in the laboratory frame. 
In the case where e = �88 we obtain a different plane-polarized wave with a 
sinusoidal wave form in place of the non-linear wave form determined by the 
(~4)4-theory and with the dispersion relation E = 3e94/4 of the circularly 
polarized wave. Even more interesting, is the 'edge on' wave with e r �88 for 
which the wave form has 'beats', as illustrated in Fig. 7. 

cz ~'~: 0 

Figure 7--The transverse part of the ~, 0, ~ ,  ~ -wave form. 

Thus, we have, altogether, a four-parameter family of nonlinear analogs 
of electromagnetic waves. In the (O, N,q)0,r)-wave, the Euler angles fix 
the orientation of ~" relative to ~ and the orientation of the line of nodes 
relative to any fixed unit vector ~' perpendicular to k, q)o is the angle between 
the line of nodes and any ray defined by a recognizable feature of the wave 
form, and r specifies the doubly periodic structure. The implied twofold 
degeneracy that follows from the choice of  sign that can be made in the 
specification of  l can be formally removed by always assigning the plus 
sign to l, while O and W are both permitted to take on all values. Then, 
however, the surface traced by the endpoints of polarization vectors that 
correspond to different solutions is a double covering of the unit sphere, 
since the full range (0,27r) of ~ is required to specify the orientation of the 
ellipse within which the transverse part of the rotating wave is inscribed (not 
symmetrically in general), at least the range (0,7r) of O is required to account 
for the tracing of  the paradigms of  the transverse components in either 
direction (this much covers the sphere once), and the (O,~ ,~0, r ) -  and 
( - O , 7  t, ~b0,r)-waves have identical transverse components while their 
longitudinal (and time-like) components have opposite signs.t The sign 
of  A is immaterial, since A --> - A  is equivalent to @ -+ - 0  and ~ -+ ~ • 7r. 

Actually, a little more, of a speculative nature, can be said here. If  we 
confine our attention to those waves for which r is rational (=p/q) and 
measure ~0 from the line of  nodes to the nearest maximum of e, then when 
q is even the transverse part of  the rotating wave is symmetric after all 

t A relation between double covering of the unit sphere and spinors via the Cayley- 
Klein parameters is discussed by Goldstein (1953, Sections 4 and 5). 
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(when ~--~ T •  7r), the range of N is halved to (0,Tr), and the double 
covering of the unit sphere is lost--when q is odd the asymmetry is there. 
Thus we may provisionally identify the wavepackets of the p/q rotating 
waves with prototypical models of classical bosons and fermions, depend- 
ing on whether q is even or odd. 

4. Wavepackets 

In this section we shall isolate and discuss a very special class of modulated 
waves, saving the discussion of more general modulated waves, which is 
beyond the scope of this paper, for later. Let us consider the class of solutions 
in ((AA)2)4 where 

(q~, A) = A(cot, x)(0, cos qs(cot, x), sin qs(wt, x), 0) 

A(cot + 27rr, x) = A(cot, x) 

r + 27rr, x) = r x) + 27rr (4.1) 

in some inertial frame, the wave-fiame. This includes the plane waves of 
the previous section in the special case where A and ~ are independent of x, 
and it describes a modulated wave with a carrier wave form that does not 
differ qualitatively from that of a 2~rr-periodic plane wave. The frequency 
co and the wave form parameter r are to be fixed, and it may be noted that 
the assumption that the wave-frame is inertial implies it is not rotating-- 
hence the Euler angles 0, ~ a n d  qb 0 of the carrier are fixed as well. Although 
(4.1) implies serious restrictions on the class of solutions under considera- 
tion, the Euler equations that govern them are still rather complicated, and 
even the problem of proving the existence of wavepacket-like solutions of 
them looks rather difficult. What will &fact be discussed here is an approxi- 
mate theory of them, in which the approximate x-dependence of solutions 
is determined by a kind of coefficient averaging. 

Before the approximate theory is presented, it will be helpful to cite two 
representation theorems that provide a structure within which perturbation 
theories and other approximate theories can be imbedded. The first theorem 
has to do with representations of the form 

A~(x k) = .4'(P(xk), x k) (4.2) 

of solutions in field theories governed by variational principles of the form 

3 f 5e(A ~, ~ 4 A,j)d x =  0 (4.3) 

If we add the stipulation that the functions ~ are periodic or almost periodic 
functions of their first arguments, then (4.2) is a generalized phase-amplitude 
representation in which the phase P(x k) is displayed explicitly and the 
amplitude is contained implicitly in the xk-dependence. In the discussion of 
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phase-amplitude representations it is convenient to regard the functions 
Z ~ as functions of five independent variables, i.e. ~ (0 ,  x~). Then 

A i ( x  k) = .~(0,  x~)lo=r(~b and A~j(x k) = (P j .4io + A ,j)[o=vc~k) 

(4.4) 

where the subscript 0 denotes a partial derivative with respect to the first 
argument. Now let us define 

-Lfi( -~i, A'0, A5; P ,J) =- ~C~a(~*, p ,s ~*0 + A-~). (4.5) 
Then we have 

Theorem 1 

If  Xt(0,x ~) is a solution of the Euler equations of 

3 f 2 ( Z ' ,  .41o, ~ i j  ;P.j) d 4 x dO = 0 (given P j) 

then .4i(P(xk), X k) is a solution of the Euler equations of (4.3). 

(4.6) 

The theorem can be proved by writing out the Euler equations of (4.3) 
under the representation (4.2), using the chain rule for partial differentiation 
as in (4.4). The further relations 

~ ,  = ~-q~t, c~o , = p , ~ ,  ,~, c ~ ,  j = ~q~ j (4.7) 

imply that the result is the set of Euler equations of (4.6), all evaluated at 
0 = P(x~). What the theorem provides is a general framework within which 
averages over the phase of a modulated wave can be computed without the 
necessity for computing the phase itself. The functions P~ can be replaced 
by a set of functions o) i if we append the integrability conditions 

o)~. s = cos, i (4.8) 

The functions (coi) = (COo,-k) are to be interpreted as the local frequency 
and wave-number vector, as in geometrical optics--P(x k) need not be 
computed from them to evaluate averages over the phase, since such 
averages are simply averages over the fifth independent variable 0. 

The variational principles (4.3) and (4.6) are to be interpreted at this 
stage of the development of ((AA)2)4 and similar field theories merely as a 
convenient way to write a set of partial differential equations that happen 
to be Euler equations--nothing has been said yet about boundary conditions 
or behavior of the fields at large distances from the neighborhood of a 
localized solution. Such questions about boundary conditions on the 
fields A ~ will be deferred until more is known about properties of some 
solutions--only the conditions on the 0-dependence o fX  i need be discussed 
at this point. Theorem 1, it may be noted, is formulated entirely in terms of 
Euler equations, and nothing need be said about boundary conditions to 
derive it. If, however, (4.6) is to be something more useful than an un- 
necessary complication of (4.3), it makes sense to restrict the 0-dependence 
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of .~i in a manner that reflects some known properties of the field theory. 
For ((AA)2)4 the existence of periodic and almost periodic plane waves 
suggests the restriction of (4.6) to the class of solutions where the 0-depen- 
dence of_~i is almost periodic.]" 

Given a restriction of the fields -4~ to the class of almost periodic functions, 
we can now look into the possibility of formulating direct methods for the 
solution of (4.6), What is to be discussed is in some sense a generalization 
of the Rayleigh-Ritz method (a special case of the Galerkin method for 
problems governed by a variational principle, also called the variational 
method in some contexts) where the solution is expressed in terms of 
representations of the form 

..t'(0, x k) = A'(0; Qe(xk)) (4.9) 

In the representation (4.9) the set { Q~(xk)} is a countable, generally infinite, 
set of parameters, in terms of which the 0-dependence of A ~ is specified at 
each point (xk). For example, there is in general a trigonometric series of  
the form 

cO 

f(O) N ~ a, exp (ia, 0) (4.10) 

associated with every almost periodic function, but the question of con- 
vergence of the series to the function has to be treated rather carefully.+ + 
For solutions of the form (4.i), the fields .g~ belong to a restricted class of 
almost periodic functions, and the question of convergence is less trouble- 
some. The phase is 0 = cot, and the parameters Q~ which depend only on x 
can be taken to be the Fourier coefficients of 

A(O,x)=2 A,(x)cos(n---Or ) 
0 

(4.11) 

1 

Solutions of (4.6) are at least C 2 functions of 0, and the series (4.11) are 
convergent, with the possible exception of the limiting case where r = �89 

In any case, given a representation of the form (4.9), we can in principle 
evaluate 

T 

2 - limr_,o~ 12T f ~(A~'P ' j2~~ + ~ QSA~')" dO 
- -T  

o,p = s Q,j, ,.,) (4.12) 

l o f  course, .go really stands for the Lagrangian density of ((AA)=)4 in this section. If 
similar remarks are to be applied to other field theories, it makes good sense to look 
first to see if they have almost periodic plane waves. 

Compare Besicovitch (1954), 
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The second representation theorem is 
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Theorem 2 
Given a representation of the form (4.9) of an almost periodic solution 

of  (4.6); the parameters Q~ and the phase P of it are related by the Euler 
equations of  

3 ( 2 ( Q ~ ,  Q~j, P,j) d 4 x = 0 (4.13) 
, /  

The proof  of  Theorem 2 follows by the use of (4.12) to perform a direct 
evaluation of 

1 ( r 
( 2 0 ~ ) , j  - 2o~  = lira V~{ f -4~{(~ '0)0  + ( ~ '  .),~ - f.:'} dO 

' T . . . .  L - ~  'J 

- (A~,SfZ,o)ITT} = 0 (4.14) 
] 

and the observation that 
T 

l i m l f  1 r i t  ~ 
T--)c~,~I  I - T  ' T- .eo~, l  [ 2  T 

- T  "! 
- ( s  dO + ( A 0 ~ a , ~ , o )  - T  = ( 2 ~ , ) , j  = 0 ( 4 . 1 5 )  

Equation (4.15) indicates that the phase (P(xk)) cannot be chosen arbitrarily 
in a solution of  the form (4.9)~instead, it is to be determined concurrently 
with the parameters Q~(xk). In effect (4.15) is an integrability condition, 
necessary if the fields _d~ are to be bounded, almost periodic, functions of 0. 
Here again, P,~ can be replaced by o~(x ~) if we append the integrability 
conditions (4.8). 

Theorem 2 provides the structure within which the truncated approxima- 
tions of the Rayleigh-Ritz method can be formulated. The sequence of 
approximations is defined by including one more of the parameters Q~ in 
each successive member of it. That the approximations are improved as the 
number of parameters is increased, will be taken as an article of faith here, 
but it may be noted that some recent work on the Galerkin method offers 
the promise that convergence and existence of solutions can be established 
in this framework, t 

Here we shall discuss some properties of the solutions of the roughest 
(one term) approximation that is exact in at least one case (the plane wave). 
Equation (4.1) is to be replaced by 

(~, A) ~ A(x) a~(oot)(0, cos {b~(~ot), sin q)~(oJt), 0) (4.16) 

t Compare Cesari (1964). 
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where a~(O) and ~,(0) are the amplitude and angle of the 2~rr-periodic 
plane wave that was discussed in Section 3. If a,(O) is defined in accord with 
(3.37), then A = (4E) TM for the plane wave. For approximations of the 
form (4.16) 

T 

~--~m~o~ f {le~ +ar2qD;r2)-�88189 2 

- T  

+ �89 2 + Ar 2) - A~ A~ sin 2q~, + �89 2 - Ax 2) cos 2q),]} dO 

= ~o~ ~, A ~ - ~ 3 , ( A ?  + �89 ~ + a / ) )  - �88 2 - A ,?)  

-- 4 ~ A  4 (4.17) 
where 

T 

=, = lim 1 f 
t-,co 2T 

- T  

Zer 

(a'~ 2 + a, 2 q~'r 2) dO = 2~r f (a'~2 + a'2 ~b:2)dO 

and 

T 

f 
- - T  --fit" 

(4.18) 

T y 
r o,4dO 1 :r~oo2 j = ~ r  ar4 dO 

- - T  --~Tr 

are positive numbers that can easily be evaluated, given r. The vanishing of 
the integral of a, 2 sin 2(/), can easily be arranged by assigning the Euler angle 
q)0 in such manner that 0 = 0 is a relative maximum of a~--then q~, and 
sin2~br are odd functions of 0, a~ and a, 2 are even functions, and the integral 
vanishes. The integral 

T 

3, = lim 1 f a~2cos2qbdO (4.19) 
T~2T .J  

- T  

varies with r in a manner that seems rather insane at first sight, but really 
is not. To evaluate it we may first divide the interval ( - ~ ,  ~) into libration 
periods as ( . . . .  37rr,-~rr, rrr, 3~rr" "), and then write 

6 , = l i m  1 ~ 1  f N ~  2N + 1 ,=- ~ aft cos 2(q)~ + 2nrrr) dO 

= 27r~r a, z cos 2~b, dO lim cos 4mrr 
- , ,  \u-,r 2N + 1 -iv 
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[l~/f2a~12dO=fll/2 when r =�89 

1 
when ~-~ < r < �89 

The first line of the evaluation follows directly when �89 is substituted for r, 
and the second line follows when the series is expressed in terms of the real 
part of sums of powers of complex exponentials. The discontinuity of 
8 r at r = �89 can also be interpreted in terms of the results 

~limlim " -1  ~ .~2N + l ' [ 2 R e [ e X p [ i 4 ( N + l ) r r r ] - l } - l ]  = 0 (  ~ r ~ - T  

(4.21) 
lim l i m _ . ) . [ 2 R e [ e X p [ i 4 ( N + l ) T r r ] - - 1 } - l ] = l  
N . . . .  ~ 2 N +  1 k [ exp(/4~rr) - 1 

When 3~/2 is set equal to fl~/2, the result 

c~�89189 + Ay2)-�88 A4 (4.22) 

is precisely that which is obtained if the plane-wave wave form 

(r A) - A(x) a,/2( ot) (0, 1,0, 0) (4.23) 

is used to define the one-term approximation. Evidently the discontinuity 
of S, and the corresponding qualitative change in the properties of modulated 
waves at r = �89 really there, although no explanation of it has been discerned 
yet. For present purposes we shall take the safe course, and restrict r to the 
range i/~/6 < r < 3. 
Then 

(~ N �89 o~ r A 2 _ �89 2 + �89 + Ay2)) - �88 A4 (4.24) 

and it may be noted that plane-polarized waves have not been altogether 
expunged from the theory--we may consider the limit where r ~ 3, and 
there is also the circularly polarized wave seen edgewise in the laboratory 
frame. 

It may be noted again that the coefficients ~.,, fl, and ~,, are positive for all 
values of r in the range 1/~/6 < r < 3, and furthermore they do not vary 
much with r. Accordingly, the qualitative features of solutions governed by 
(4.24) can be discussed in terms of a typical case where r is chosen for 
convenience. The easiest case is clearly r = 1/~/6, and for this case it is 
convenient to change the normalization implied in (4.16) slightly and work 
with the one-term representation where 

(r A) ~ A(x)(0, cos 0, sin 0, 0) (4.25) 
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and 
2 ~ 302 2 A 2 - �89 2 + �89162 2 + Av2)) - �88 (4.26) 

In this paper only two particular solutions of the Euler equations of (4.26) 
will be discussed--in the first, the solution has spheroidal symmetry and it 
is localized in space, and in the second, the solution has elliptical symmetry 
and is localized in the directions normal to the direction of propagation of 
the wave-frame relative to the laboratory. 

The first case is the easier o n e - i n  terms of the independent variables 
(~, y, ~,) = ( x x / 2 , y ~ / 2 , z ) ,  the Euler equation of (4.26) is 

Ace + A~.~ + A ~  + (02z _ A 2) A = 0 (4.27) 

and the spherically symmetric version of it (spheroidally symmetric in the 
original variables) is 

A~ + 2 -/ A~ + (02z _ A2) A = 0 (4.28) 

where 
/7 = (22 -}-,~2 _}_ ~2)1/2 = (2(X 2 + y2) _}_ Z2)1/2 (4.29) 

To see that (4.28) has localized solutions we can construct the energy 
functional 

~(f)  ~ �89 2 + �89 A2 - �88 4 (4.30) 

which, it may be noted, would be the energy integral of  (4.28) but for the 
presence of the term 2A~/f. Then it follows directly by the use of the 
differential equation that 

~ ' ( r )  = --  2A~2 ~< 0 (4.31) 
F 

Once again, the dimensional group of ((AA)Z)4 can be used to eliminate a 
parameter-- the substitutions 

02~ = R, A = 02a and ~ = 024 r (4.32) 

reduce the problem at hand to the pair of equations 

e(R)  = SaR a + �89 2 -- �88 4, ~'(R) = - 2 2 ~ a a  (4.33) 

The qualitative features of the spheroidal wavepackets can now be seen by 
plotting the lines where ~ is a constant in the phase plane (aR versus a). 
According to the second of equations (4.33), the trace of a solution crosses 
those lines in such a manner that the value of ~ decreases as R increases, 
making a first-order contract at points off the a-axis when R is finite and a 
third order contact when aR is zero. Figure 8 is a schematic diagram of a 
typical trace, and the corresponding solution. 
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Although no specific solution has been drawn in Figure 8, an attempt has 
been made to exhibit, without undue exaggeration, two features of (4.33) 
that require further explanation. The first is that solutions that are trapped 
in the interior of the lens-shaped region defined by �9 = �88 do in fact spiral all 
the way to the origin of the phase plane as R -+ oo. The second feature is 

I a R 

- - ~ - - ( ]  

] 
Figure 8a---The trace of a typical solution, 0 < ~(0) < �88 

8 

Figure 8b--Qualitative behavior of a typical solution, A(0) < o~. 

that solutions that begin near one of the two hyperbolic points where 
a = zkl and ag = 0 tend to hover there until R is relatively large before they 
spiral to the origin. These and other asymptotic features of the solutions 
have been discussed by Bisshopp (1971c). 

A solution that has spheroidal symmetry in the wave-frame, where it is 
a purely time-like oscillation, generally has ellipsoidal symmetry in the 
laboratory frame if the wave-frame is moving relatively to it. The solution 
can be expressed in the laboratory in terms of a Lorentz transformation, 

16 
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and for present purposes it will suffice to exhibit the case where the wave- 
packet is moving in the direction of its polarization vector, i.e. where 

= O. Then 

z t -/3z 
%/(1 -- f12), [ ~/(1 -- f12), 1/31 < 1 (4.34) 

and the solution 

(Z --/3t)2\1/2\ [ t --/3Z ) 
t-/3z ) 

sin oJ ~(1 - f12), 0 (4.35) 

is a wavepacket (still spheroidal in this case) that moves with the group 
velocity/3 and is composed of rotating plane waves that travel through it 
with the phase velocity 1//3. In the general case where O r 0, the Lorentz 
transformation induces non-zero fields ~ and ~. A in the laboratory, and 
the wavepacket appears to be carrying an oscillating charge and the 
corresponding current. Not much is to be gained by exhibiting such solu- 
tions at this point, however, since these wavepackets, if they describe 
particles, describe free particles, and such features as their net charges and 
their masses are still hidden, not to emerge until interactions are considered. 

The second particular solution of the Euler equations of (4.26) to be 
discussed here is one in which the solution is independent of the coordinate 
z in some coordinate system related by the Euler angles to the wave-frame, 
in which the polarization vector is on the ~-axis. To describe the shape of the 
resulting beam of radiation we may take 71 = ~0 = 0 without loss of 
generality, and use the representation where 

(dp, A ) ~  A(x,y)(O, cosO, cosOsinO, sinOsinO) (4.36) 

in a frame that moves with the velocity/3 in the direction of the z-axis of the 
laboratory frame. Then 

,5~ ~ �89 2 A2 _ 1 [ 1 ~ 2 1 + s in  2 {9 2 \ ~g~x q- ~ ely ) -- �88 4 (4.37) 

and for the elliptically symmetric solution where 

2 \1/2 
A(x, y) = eoa(R), R = w 2x 2 -~ 1 + ~ y 2 )  (4.38) 

we obtain the pair of equations 

e(R) = �89 2 + �89 2 - �88 4, d(R) = -1  --~ aR 2 (4.39) 

Qualitatively, the solutions of (4.39) behave similarly to those of (4.33), but 
the details of the asymptotic behavior are slightly different in the two cases. 
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The localization of the solution in space is there, and the laboratory-frame 
expression 

( (2 2 2,1/2~ [ flsinO . t - f lz  
(r - - ~  x 2 + 1 +sin2@ y ) )'(V'(1-flz)SmW~c/-O---fl2) ' 

t - f l z  . - ,  . t - f i z  sin 0 
cos , c o s   ,sln - 

t - 3 z  \ 
x sinw ~/~-_~2)]  (4.40) 

can be interpreted as a model, in ((AA)2)4, of a fully developed, self-focussed 
laser beam, propagated without change of shape and surrounded by its 
diffraction rings. The one-parameter family of solutions defined by 
a•(0) = 0 and 0 < a(0) < 1 represents beams of varying sizes (the width of 
the first dark ring measured along the semiminor axis of symmetry is a 
convenient measure of the size). For a fixed value ofw the width of the beam 
varies from zero (a(0) -+ 0) to infinity (a(0) -+ 1). Given a member of the 
family defined by a fixed value of a(0), the width of the beam is proportional 
to w -1, and in the limit where oJ -+ 0 and ((AA)2)4 reduces to Maxwell's 
equations, the width of the beam increases without bound and there is no 
contradiction with the nonexistence of self-focussed beams governed by 
Maxwell's equations. 
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